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Singular solutions of the two-dimensional shallow-water equations with algebraic singularities of the "square root" type, which 
have been studied before [1-4], propagate along the trajectories of the external velocity field, over which this field satisfies the 
Cauchy-Riemann conditions. In other words, the differential of the phase flow on such a trajectory is proportional to an orthogonal 
operator. It turns out that in the linear approximation this situation is strongly linked with the "spreading" effect of solutions of 
the hydrodynamic equations (cf. [5, 6]); namely, a localized asymptotic solution of the Cauchy problem for the linearized shallow- 
water equations maintains its form (i.e. does not spread) if and only if the Cauchy-Riemann conditions hold on the trajectory 
of the outer flow along which the disturbance is propagating. �9 2005 Elsevier Ltd. All rights reserved. 

1. T H E  C O N S T R U C T I O N  O F  L O C A L I Z E D  S O L U T I O N S  O F  
L I N E A R I Z E D  S H A L L O W - W A T E R  E Q U A T I O N S  

Let V(x, t) be a smooth vector field in ~2 which depends smoothly on the time t, and ri0(x, t) a smooth 
scalar function; the shallow-water in the [3-plane approximation, linearized over the velocity field Vand 
geopotential rl0, are 

~U O--~+(V,V)u+(u,V)V+~Tu+Vrl = O, ~ = ~o+13x2,  

a~t t + (V, V)ri + (u, V)rl0 + 11(7, V) + ri0(V, u) = 0 

 ;jOljIo 
(1.1) 

where f~ is the Coriolis frequency in the 13 plane. 
Let us consider a Cauchy problem for this system of equations, with an initial condition localized in 

a small neighbourhood of a point x0 e R 2 

t = 0 : u  = u ( - - - - ~ ) ,  r I = I] ~ , h---)0 (1.2) 

0 0 where u (y)and ri (y) are smooth functions that decrease sufficiently rapidly as [y [ ~ oo (to fix our ideas, 
we shall assume that they are Schwartzian) and h is a small parameter characterizing the "localization" 
of the initial data. 
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The solution of problem (1.1), (1.2) will be sought in the form 

uCx, t, h ) =  o ( ~ ,  x, t )+ h o , ( ~ ,  x, t) + ... 

^{S(x,  t) t )+ h p , ( ~ ,  x, t ) +  "q(x, t, h) = ~'~.--T--' x . . . .  

(1.3) 

where S(x, t) = ($1, $2) is a continuous two-dimensional vector-valued function, and the vector fields 
1)(y, x, t), 1)l(y , x, t) and the scalar functions p(y, t), PI(Y, t) depend continuously on their arguments 
and decrease as lyl ~ oo. The functions $1 and $2 describe the localization of the asymptotic solution: 
It is concentrated in a small neighbourhood of the set S = 0. This set is assumed to consist of a single 
point for each t, that is, the vector-valued function S is assumed to vanish at a single point R(t) ~ R 2, 
and moreover $1 and $2 define curvilinear coordinates in the neighbourhood of the point (this means 
that the vectors VS1 and VS2 are linearly independent). 

Let us substitute the functions (1.3) into Eqs (1.1) and successively equate the coefficients of all powers 
of the small parameter  h to zero. Equating the coefficient of h -1 to zero, we obtain the equations. 

3S*~ (BS*~ ) 3S 
(~, Vy)V+-'~-xVy p = 0, (~ ,Vy)p +~0(--~--xVy, V = 0; ~ = ~ + ( V , V ) S  (1.4) 

where Vy is the gradient with respect to the "fast" variabley = S/h, 3S/~x is the 2 x 2 matrix of derivatives 
of S, and the asterisk denotes transposition. Taking the Fourier transform of system (1.4) with respect 
to the variable y, we obtain 

(k, co)(p, b) + PP = 0, (k, co)b + rl0(p, b) = 0 ( 1 . 5 )  

k iklll = , P = = knVS l + k 2 v S  2 
k2 3x 

where k is the variable dual to y and the tilde denotes Fourier transforms with respect to y. 

Lemma 1. System (1.5) in ~ and ~ has a non-trivial solution if co = 0. This solution is 

1 5 = 0 ,  b=nO 

where n = (-P2,Pl) is a vector orthogonal top ,  and 0 is an arbitrary scalar function. 

Proof. Multiplying the first (vector) equation of system (1.5) by the vectorsp and n, we obtain a system of three 
equations 

(k,r = 0, (k, c0)~+rl0(p,b) = 0, (k, co)(b,n) = 0 (1.6) 

The first two equations form a linear homogeneous system in ~ (p, 5). This system has a non-trivial solution 
only if (k, o~) 2 = p2"rl0 , and this equality cannot hold under the assumptions formulated above concerning the vector- 
valued function S. Indeed, since the vectors VS1 and VS2 are linearly independent, the vector p does not vanish 
for k ~ 0, that is, the quadratic form in k equal to p2 is positive-definite. On the other hand, the quadratic form 
(k, co) 2 always has a kernel - the set of vectors orthogonal to co. Thus, the first two equations of system (1.6) have 
only trivial solutions. A non-trivial solution of the last (third) equation exists if (k, co) = 0; this is true for all k if 
and only if co = 0. In that case the projection of the vector 5 onto the direction of n is arbitrary. 

Corollary 1. The solution of the Cauchy problem (1.1), (1.2) is of the form (1.3) only if the initial 
data satisfy the relations 

0 q = 0, (k, fi~ = 0 (1.7) 

This last condition means that the initial field u ~ is non-divergent, that is, it belongs to the so-called 
hydrodynamic mode (see also the remark below). 
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In what follows we shall assume that the initial data satisfy conditions (1.7); note that in that case 

0 II "lP 
U = n o 0 0 ,  n o = 

k I 

where 00(k) is a scalar function. 

Corollary 2. The vector-valued function S(x, t) satisfies the linear equation 

~S 
Ot + (V, V)S = 0 (1.8) 

Comparing the form of the asymptotic solution (1.3) with the initial condition (1.2), we obtain the 
initial condition 

t = 0 : S  = x - x  0 (1.9) 

The solution of the Cauchy problem (1.8), (1.9) is 

-I  
S(x, t) = gt x - x  o 

where gt is the phase flow of the field V. In other words, S(x, t) + Xo is the initial point of a trajectory 
of the field that arrives in time t at the point x. 

Remark. The characteristics of the shallow-water equations may be divided into two types: hydrodynamic and 
acoustic. The equation of the hydrodynamic characteristics has the form (1.8); the characteristics themselves are 
the trajectories of the field V. The acoustic characteristics are described by the eikonal equation 

bs )2 + (V, V s )  = 'qo2(Vs) 2 

Lemma 1 implies that localized solutions of type (1.3) only propagate along hydrodynamic characteristics, that 
is, no acoustic modes of this type appear. 

The typical behaviour of acoustic modes with localized initial conditions for arbitrary hyperbolic equations was 
described in [7]. As a rule, after an arbitrarily small time, such solutions become functions localized near a set of 
codimension 1 (in the case under consideration - near a curve in plane). Thus, conditions (1.7), which single out 
the hydrodynamic mode, thereby guarantee localization of the solution near the moving point. 

Now consider the terms of order h ~ that arise when the functions (1.3) are substituted into Eqs (1.1). 
Equating such terms in the first (vector) equation to zero and taking Fourier transformations with respect 
to y, we obtain 

v +  bV ~ x O +  f~T1)+ ippl = 0 (1.10) 

where the dot denotes differentiation along trajectories of the vector field V. It is clear that the initial 
condition for the function 9 has the form 

t = 0 : b  = fi0 = noOo(k ) 

Lemma 2. The function 9 has the form 

2 f, ) ~) = n(k) k--"EOo(k)exp - f (V ,  V)(z, q )d t  l 
P \ 0 z = gT'x 

Proof. Lemma 1 states, in particular, that 9 = nO; we substitute this form of the solution into Eq. (1.1). Multiplying 
the resulting equality by the vector n, we find that 

n20+(n,n)O+ n,i)x ) =0 (1.11) 
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Differentiating Eq. (1.8), we obtain 

~V* 
= - - ~ - x  p 

Multiplying this equation by the matrix T of rotation by rt/2 and taking into account the following equality, which 
is true for any 2 x 2 matrixA, 

we find that 

-TA*T -l = A - t r A  

T3V*T-In = ~V ,i = - ~ ~ n  - ( V ,  V)n 

Substituting the expression for Vxn resulting from this equality into Eq. (1.11) and using the fact that n 2 = p2, we 
get 

( ~ t + ( v , V ) ) ( p 2 0 )  = 0 

whence the required formula at once follows (d/dt denotes differentiation along a trajectory of V). 

We can now formulate our main result. 

Theorem. T h e  solution of the Cauchy problem (1.1), (1.2) has the form 

. .<x.. . , . . :  s..<..q..o<,<.oxpO :..:. :-..o +w 
l!2 P 

E(t )  = exp - (V, V)dt  I 

(1.12) 

where I w I ---) 0 as h ~ 0. 
The proof amounts to computing a few corrections to the leading part of the asymptotic expansion 

described above and subsequently estimating the remainder. To obtain such an estimate one can, for 
example, use the representation of the resolvent operator of the Cauchy problem for Eqs (1.1) as an 
asymptotic series with respect to smoothness (cf. [8]). 

2. S P R E A D I N G  OF THE L O C A L I Z E D  S O L U T I O N  AND 
T H E  C A U C H Y - R I E M A N N  C O N D I T I O N S  

Note that the integrand in formula (1.12) need not be smooth at the point k = 0, since the quotient 
k2/p 2 is not continuous there. As a result, the function ~(y, x, t) decreases as iY I ~ ~ like O(ly [ 2), that 
is, the initial condition "spreads". If further conditions are imposed on the field V, however, this spreading 
may disappear. 

Proposition. A s  h --* 0, the leading part of the integrand in (1.12) is smooth if and only if the 
Cauchy-Riemann conditions hold on a trajectory x = gtxo of the field V emanating from the point x0: 

3V I 3V 2 OVi OV2 

~X I ~X 2 ' OX 2 OX 1 " 

In that case the leading part of the asymptotic solution of problem (1.1), (1.2) is 

-1 / 
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where  

]l 11 v R( t )  = cos~p(t) sing~(t) ~p(t) = [ ~ V l d t  = rotVdt  
-sinq~(t) cost0(t) ' ~Ox2 

0 0 

that  is, the solut ion exactly duplicates  the fo rm of  the initial dis turbance.  

Proof. We note first of all that, since v(y, x, t) = O( [y 1-2), the "slow" variable x in this function may be replaced 
mode o(1) by its value gtxo on a trajectory emanating from the point Xo; this follows from the fact that 

Ix - gtXol = ]gt(S + Xo) - g,xol = O(ISI) = O(hlYl) as S -~ 0 

It is furthermore clear that the integrand in (1.12) is smooth if an only i fp  2 = k2~, where ~ is independent of k. 
Since the vectorp satisfies the equations 

OV* p = - - ~ x p ,  p ( O ) - - k  

this condition means that the Cauchy operator of the system differs by a scalar factor from an orthogonal operator, 
i.e. the matrix (OV/3x)*, and therefore also OV/Ox, differ from a skew-symmetric operator by a scalar term. In that 
case, therefore, we have 

OVlOx = lal + vT  

where I is the 2 x 2 identity matrix, whence it follows that 

bV~ ~V 2 ~V I OV 2 
= = = = "  

that is, the Cauchy-Riemann conditions hold on the trajectoryx = gtx0. Suppose these equalities indeed hold. Then 

2 -2  k 2 p = exp gdt = n(p) = J-E(t)R(t)n(k) 
\ 0 / 

whence expression (2.1) follows at once. 

Example.  Evolut ion o f a p a c k e t  with exponentialprofile.  As a s imple  example ,  let us consider  an initial 
velocity field 

u~ = ~ e x p  - , ~ = 
~13yl 

I f  the C a u c h y - R i e m a n n  condi t ion holds on  a t rajectory o f  the ou te r  flow, then the leading par t  o f  the 
asymptot ic  expansion of  the solution of  p r o b l e m  (1.1), (1.2) is 

2 
U= , , /~R(t)exp(-y) y.~(g~lx_xo)/h 

But  if the condi t ion fails to hold, then  

U = ~--~A(t)~ (q~)exp - D_ 2 ~ dqa 

~,(x, t, q0) = (e (9) ,  x -  g,x0), e(q,) = (costp, sin~p) 

_ r 2 

0 
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where tp is the polar angle in the plane of the variables k, D_: is the function of a parabolic cylinder of 
order -2, and A is the Cauchy operator of the system 

3V 
= ~ x  z 

This research was supported financially by the Russian Foundation for Basic Research (02-01-00850). 
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